Chaos in disordered nonlinear lattices

Haris Skokos

Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Work in collaboration with Joshua Bodyfelt, Sergej Flach, Ioannis Gkolias, Dima Krimer, Stavros Komineas, Tanya Laptyeva, Bertin Many Manda, Bob Senyange

Outline

- Disordered 1D lattices:
 - ✓ The quartic Klein-Gordon (KG) model
 - ✓ The disordered nonlinear Schrödinger equation (DNLS)
 - **✓ Different dynamical behaviors**
- Chaotic behavior of the KG and DNLS models
 - **✓ Lyapunov exponents**
 - **✓ Deviation Vector Distributions**
- Summary

The Klein – Gordon (KG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left[\frac{1}{2}, \frac{3}{2}\right]$.

Linear case (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem:

$$\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$$
 with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

The discrete nonlinear Schrödinger (DNLS) equation

We also consider the system:

$$\boldsymbol{H}_{D} = \sum_{l=1}^{N} \varepsilon_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\boldsymbol{\beta}}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} - \left(\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l} \right)$$

where ε_l chosen uniformly from $\left[-\frac{W}{2},\frac{W}{2}\right]$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization

We consider normalized energy distributions in normal mode (NM) space

$$z_v \equiv \frac{E_v}{\sum_m E_m}$$
 with $E_v = \frac{1}{2} \left(\dot{A}_v^2 + \omega_v^2 A_v^2 \right)$, where A_v is the amplitude

of the vth NM (KG) or norm distributions (DNLS).

Second moment:
$$m_2 = \sum_{v=1}^{N} (v - \overline{v})^2 z_v$$
 with $\overline{v} = \sum_{v=1}^{N} v z_v$

Participation number:
$$P = \frac{1}{\sum_{v=1}^{N} z_v^2}$$

measures the number of stronger excited modes in z_v . Single mode P=1. Equipartition of energy P=N.

Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] Δ : width of the frequency spectrum, d: average spacing of interacting modes, δ : nonlinear frequency shift.

Weak Chaos Regime: $\delta < d$, $m_2 \sim t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].

Intermediate Strong Chaos Regime: $d<\delta<\Delta$, $m_2\sim t^{1/2} \longrightarrow m_2\sim t^{1/3}$

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: $\delta > \Delta$

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

Single site excitations

DNLS W=4, β = 0.1, 1, 4.5 KG W = 4, E = 0.05, 0.4, 1.5

No strong chaos regime

In weak chaos regime we averaged the measured exponent α (m₂~t $^{\alpha}$) over 20 realizations:

 α =0.33±0.05 (KG) α =0.33±0.02 (DLNS)

Flach et al., PRL (2009) S. et al., PRE (2009)

KG: Different spreading regimes

Crossover from strong to weak chaos (block excitations)

Symplectic integration

We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the KG model:

$$\boldsymbol{H}_{K} = \sum_{l=1}^{N} \left(\frac{\boldsymbol{p}_{l}^{2}}{2} + \frac{\tilde{\boldsymbol{\varepsilon}}_{l}}{2} \boldsymbol{u}_{l}^{2} + \frac{1}{4} \boldsymbol{u}_{l}^{4} + \frac{1}{2W} (\boldsymbol{u}_{l+1} - \boldsymbol{u}_{l})^{2} \right)$$

and the 3-part splitting integrator $ABC^6_{[SS]}$ [S. et al., Phys. Let. A (2014) – Gerlach et al., EPJ ST (2016)] to the DNLS system:

$$H_{D} = \sum_{l} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1}\psi_{l}^{*} + \psi_{l+1}^{*}\psi_{l}), \quad \psi_{l} = \frac{1}{\sqrt{2}} (q_{l} + ip_{l})$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

By using the so-called Tangent Map method we extend these symplectic integration schemes in order to integrate simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

KG: LEs for single site excitations (E=0.4)

KG: Weak Chaos (E=0.4)

t = 1000000000.00

KG: Weak Chaos

Individual runs

Linear case E=0.4, W=4

Average over 50 realizations

Single site excitation E=0.4, W=4

Block excitation (L=21 sites) E=0.21, W=4 Block excitation (L=37 sites) E=0.37, W=3

S. et al., PRL (2013)

Weak Chaos: KG and DNLS

Average over 100 realizations

Block excitation (L=83 sites) E=0.415, W=2
Block excitation (L=37 sites) E=0.37, W=3
Single site excitation E=0.4, W=4
Block excitation (L=21 sites) E=0.21, W=4

Block excitation (L=21 sites) β =0.04, W=4 Single site excitation β =1, W=4 Single site excitation β =0.6, W=3 Block excitation (L=21 sites) β =0.03, W=3

Strong Chaos: KG and DNLS

Average over 100 realizations

Block excitation (L=83 sites) E=0.83, W=2 Block excitation (L=37 sites) E=0.37, W=3 Block excitation (L=83 sites) E=0.83, W=3 Block excitation (L=21 sites) β =0.62, W=3.5 Block excitation (L=21 sites) β =0.5, W=3 Block excitation (L=21 sites) β =0.72, W=4

Deviation Vector Distributions (DVDs)

Deviation vector: $v(t) = (\delta u_1(t), \delta u_2(t), ..., \delta u_N(t), \delta p_1(t), \delta p_2(t), ..., \delta p_N(t))$

DVD:
$$w_l = \frac{\delta u_l^2 + \delta p_l^2}{\sum_l \left(\delta u_l^2 + \delta p_l^2\right)}$$

Weak Chaos: KG and DNLS

Strong Chaos: KG and DNLS

W=3, L=37, E=3.7

W=4, L=21, β =0.72

Characteristics of DVDs

Weak chaos

Strong chaos

Characteristics of DVDs

 $log_{10} t$

KG weak chaos L=37, E=0.37, W=3

Maximum absolute deviation of DVD's mean position

$$M(t) = \max_{[\log t, \log t + \Delta]} \left| \overline{w}(t) - \left\langle \overline{w}(t) \right\rangle \right|$$

 $log_{10} t$

Summary

- Both the KG and the DNLS models show similar chaotic behaviors
- The mLCE and the DVDs show different behaviors for the weak and the strong chaos regimes.
- Lyapunov exponent computations show that:
 - ✓ Chaos not only exists, but also persists.
 - ✓ Slowing down of chaos does not cross over to regular dynamics.
 - ✓ Weak chaos: mLCE ~ t^{-0.25}
 - ✓ Strong chaos: mLCE ~ t^{-0.3}
- The behavior of DVDs can provide information about the chaoticity of a dynamical system.
 - ✓ Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.

Posters on Hamiltonian lattices

Chaotic dynamics of one-dimensional disordered nonlinear lattices

Bob Senyange, Bertin Many Manda, Haris Skokos

Bob Senyange & Bertin Many Manda: KG and DNLS

Chaotic behaviour of the Peyrard-Bishop-Dauxois model of DNA

Malcolm Hillebrand¹, Adrian Schwellnus¹, George Kalosakas², Haris Skokos¹

Malcolm Hillebrand: DNA

B. Many Manda^{†♠}, G. Kalosakas[‡], Ch. Skokos[†]

Bertin Many Manda: graphene

